You know 3 trig

Right Triangle Trigonometry
functions but there
SOL CAL TA

$$
\sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{b}{C} \frac{\text { Reciprocal Functions }}{\substack{\csc B=\frac{\text { hypotenuse }}{\text { cosecant }}(\mathrm{csc})}} \frac{c}{\text { opposite }}=\frac{b}{b}
$$

$$
\cos B=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{a}{C}
$$

$$
\begin{aligned}
& \sec B=\frac{\text { hypotenuse }}{\text { secant }} \\
& \text { adjacent }
\end{aligned}=\frac{C}{a}
$$

$$
\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{b}{a} \quad \underset{(c o t)}{\text { cotangent }} \quad \cot B=\frac{\text { adjacent }}{\text { opposite }}=\frac{a}{b}
$$

To find the 3rd side, use
Pythagorean Theorem

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
6^{2}+b^{2}=10^{2} \\
36+b^{2}=100 \\
b^{2}=64 \\
b=8
\end{gathered}
$$

1. Find all six trig ratios for angle B exactly
$\sin B=\frac{6}{10}=\frac{3}{5}$
$\csc B=\frac{10}{6}=\frac{5}{3}$
$\cos B=\frac{8}{10}=\frac{4}{5}$
$\sec B=\frac{10}{8}=\frac{5}{4}$
$\tan B=\frac{6}{8}=\frac{3}{4}$
$\cot B=\frac{8}{6}=\frac{4}{3}$
2.

Find missing
side: $a^{2}+b^{2}=c^{2}$ $5^{2}+x^{2}=13^{2}$

$$
\begin{aligned}
25+x^{2} & =169 \\
-25 & -25 \\
\sqrt{x^{2}} & =1144
\end{aligned}
$$

$$
x=12
$$

FIND each value as a fraction:

> SOU

